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ABSTRACT 

 

The current study presents a general optimization procedure that could be used in designing of 

various structural applications. To validate the performance of the proposed procedure, a real life 

application of a custom welded I-Beam gantry crane is selected. The crane is composed of three 

rectangular plates with the same length and different thicknesses and widths welded together by 

full penetration welds over the span length to form an I-Beam profile. The thicknesses and widths 

of plates are to be optimized to have the minimum cross section area while respecting yield, 

buckling, deflection and fatigue criteria. A mathematical procedure based on Timoshenko beam 

theory and Crane Manufacturers Association of America (CMAA) in combination with the Genetic 

Algorithm (GA) is presented, and a Mathcad code is implemented to find the optimal I-Beam cross 

section dimensions. Nine examples are introduced for 8, 12 and 20 m crane span subjected to 10, 

20 and 40-toncapacities. It is noticed that the optimized I-section configurations always show 

narrow and thick lower flange, wider and thinner upper flange and tall and very thin web. 

Theupper flange local buckling and the lateral buckling limits are achieved for all nine cases, 

75% of cases for the web buckling limit, about 33% of cases for the fatigue and yield limits 

whereas the maximum deflection constraint is never critical. The obtained results were verified 

using ANSYS Workbench software with a 3D Solid Finite Element model and shown good 

agreement, which confirms that the proposed procedure is efficient. 

 

Keywords: optimization; I-beam; yield; buckling; design criteria; finite element. 

 

Introduction 

 

The gantry cranes are frequently used for different industrial applications. According to CMAA 74-2010 [1], the 

cranes in real life engineering are classified into five main classes based on their service capacity: standby, light, 

moderate, heavy and severe service cranes. The overhead gantry crane type is widely used to serve small or medium 

duty jobs, like a repair shop, buildings service or in a machine shop. The lightweight crane with high capacity design 

depicts an essential requirement of the industry. To reach such requirement, a customized I-beam crane is a 

motivating optimization research. Even though standard I-Beam profiles are available, they are just limited to some 

standard dimensions, which are usually far from the optimum design. The crane weight, concerning initial standard 

profiles design, could be reduced up to 10% using an optimized beam [2]. 

 

Several researches have been conducted on optimization of customized and standard crane beams with different 

profiles. Gasaet al.[3], developed a numerical model of flange local stresses under the wheels acting points to 

determine the final dimension of the I-beam girder. The numerical example of 12.5-ton capacity and 25m span with 

three different wheel thicknesses demonstrated. The mathematical and FE analysis results compared to show an 

acceptable error range of 6 to 15 %.Also, they mentioned that the lower flange deflection has a great influence on 

the final girder dimensions. 

 

Other researchers have worked on optimization of the box profile girders [4, 5 and 6]; they had, in general, the 

similar procedure of optimization but they used different optimization tools. Their objective was investigating the 

same concept of weight-strength ratio using theoretical optimization routines backed up by Finite Element (FE) 

simulation. 

 

Qu et al. [4] proposed a modified Ant Colony Optimization (ACO) algorithm with new local search technique using 

mutation and applied it to solve nonlinear optimization problems having discrete variables. The developed algorithm 

of Ant Colony Algorithm with Mutation-based (ACAM) used to determine optimal crane design variables and found 

to be faster by about 20% compared to the genetic algorithm (GA) and by 11% compared to particle swarm 

algorithm (PSO). Furthermore, it always gives aglobally optimized solution, while the original ACO algorithm may 

stick at some local solution and fail to go further. 

 

Zuberiet al. [5], examined the effect of rolling load on welded box cross section-crane girderregarding buckling and 

compression stresses in the flange. The volume of the girder considered as an objective function subjected to the 

stress and deflection criteria constraints. The built-in MS-Excel nonlinear optimization solver, called Generalized 

Reduced Gradient (GRG), employed to give preliminary optimized design variables. The obtained values are then 
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used as initial inputs to ANSYS code that can handle more accurate stress and deflection calculations for verification 

purpose and do further optimization if needed. 

 

Kumar et al. [6] conducted research that aims to optimize the weight of Electrical Overhead Travelling (EOT) Crane 

Bridge girder by adding sufficient stiffeners along the girder plate instead of increasing plate thickness. He used 

mathematical modeling and Finite Element Analysis to investigate the effect of adding stiffeners and then verify the 

optimal design experimentally. His work concluded that the plate stability could be increased four times using 

stiffeners without the need to increase the plate thickness. 

 

Liuet al.[2], carried out a parametric FE study of a doubly trolley box-girder using APDL tool in conjunction with a 

Matlab code that handles the crane parameters. A three-dimensional girder model subjected to various loading 

conditions established to predict the limit of load-bearing capacity. Two different optimization algorithms, Arc 

Length Algorithm (ALA) and Nonlinear Stabilization Algorithm (NLA), used in sequence to overcome the 

optimization failures. The obtained results of their work shown a significant weight reduction of the girder by 16% 

compared to the original design.  

 

Few publications about the customized I-beam crane girder subjected to yield and buckling criteria are reported. 

Therefore, the current paper extends the similar techniques mentioned above to optimize custom I-Beam crane 

designs. Three rectangular plates having the same length (L) and different thicknesses and widths welded by 

continues full penetration welds to form a custom I-Beam crane design, see Fig.3.The live load and the beam span 

are imposed while each plate thickness and width are considered as design variables that need to be determined to 

have the minimum weight that respecting the yield, buckling, deflection and fatigue criteria. However, The 

mathematical calculations based on Cranes Manufacturer Association of America (CMAA) design procedure and 

the Hybrid Genetic algorithm (GA) are used to find the optimal dimensions of the cross section that satisfy the 

design constraints. A Mathcad platform is written to handle these calculations. Also, a 3D-solid FE model created; 

stress analyzed and optimized using ANSYS Workbench software. 

 

Design optimization procedure  

Highly sophisticated optimization techniquesare needed to achieve an optimal crane design that considers yield, 

buckling, deflection and fatigue criteria. Such techniques must deal with iterative schemes that require a 

programming language or a mathematical application such as Mathcad. The general trends of solving such problems 

in the recent years were emphasizing on carrying out a mathematical solution, an FE solution or a math-FE 

combined solution. The combined solution conducted in two different ways [5]; the first way is carrying out both 

types of analysis techniques with the same initial values and takes the most optimal results between them. The 

second one uses the output results of the mathematical solution as input values of an FE solution. The present study 

follows the second method. The flowchart Fig.1 illustrates the proposed procedure. It starts with problem 

formulation, i.e., defines design variables, objective function,etc. Follows that entering the data of crane, which are 

in our case the span length, the rated load, and the material; then performing the optimization Hybrid Genetic 

Algorithm (GA) code,the details of which are shown in Fig.2, to give the so called Math-Optimal design 

variables.The Math-optimal design variables are input as initial variables to the FE Optimization phase using 

ANSYS Workbench 15 software in which the Response Surface Optimization method is used [7,8]. 
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Fig. 1: Proposed design optimization procedure [9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Hybrid Genetic Algorithm [10] 

 

 

 

 

 

 

 

 

Model Formulation 

- Define the Design Variables (DV’s). 
- Set the Objective Function. 
- Define the Constraints. 
- Create the Transformed Objective Function. 

Hybrid Genetic Algorithm (GA) 

Math-Optimal Design Variables 

Mathematical Optimization Phase 

Final Optimal Design Variables 

FEM Model 
- Initial Model Geometry. 
- Static Analysis Using Ansys Workbench. 

Response Surface Optimization 

- Design of Experiment DOE. 
- Surface of Response. 
- Optimization. 

 

 

FEM Optimization Phase  
(Using Ansys Workbench) 

Input Data of the crane 
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Problem description 

 

The welded I-Beam crane and the loading conditions are shown in Fig. 3. The beam formed by three plates joined 

by continuous welds over the beam length. They have the same length but different thicknesses and widths; the 

dimensions and loading conditions defined as follow: 

 

b1 : lower flange width,    t1 : lower flange thickness, b2 : upper flangewidth, 

t2 : upper flangethickness, h : web height, t3 : web thickness, 

L : beam span, W1 : crane weight, W2 : live load (Lifting load), 

x : distance of live load from the left end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: The crane beam dimensions and loading conditions 

 

Objective function 

 

Where the span length is fixed with a constant cross section area of the crane beam, the weight is just proportional to 

the cross-section area so that the objective function is defined by the cross-section area, as follows. 

 

𝑓 = 𝑏1. 𝑡1 + 𝑏2. 𝑡2 + . 𝑡3                                                         (1) 

 

where the parameters b1, t1 …etc. are shown in Fig. 3. 

 

Design constraints 

 

The most important criteria of the Crane Manufacturers Association of America specification, known as CMAA74-

2010, are considered and summarized as follows 

 

 Tension stress Constraints (due to gravity and live load) :  

 Lateral Buckling Constraint: 

 

1.9 − fBuckling ≤ 0 (Timoshenko Beam Theory, [11][16]) (3) 

 

 Local Buckling Constraints: 

 

h t3 − 260 ≤ 0 (AISC 2016 sec. F13, [12][7]) (4) 

 

b2 2t2 − 260  σy ≤ 0 
(CISC handbook p.p5-11, [13][18]) 

(5) 

 

 

σcomb _max − σTallowed ≤ 0 (CMAA 74-3.4.4.1, [1][2]) (2) 

 



IRA-International Journal of Technology & Engineering 

 

 
 33 

 Deflection Constraint : 

 

δv − L 600 ≤ 0 (CMAA 74-3.5.5, [1][2]) (6) 

 

 Fatigue Constraint (due to repeated load fluctuation ΔW2 only) : 

 

(Δσ)comb -max
− Δσallowed  ≤ 0 (AISC 2016 sec. F13, [12][7]) (7) 

 

 

where  σcomb = 

2 2 2

x y x y xyσ + σ - σ σ + 3τ
 is the Von-Mises equivalent stress; 

 

σTallowed= Allowable tension stress, according to CMAA 74; 

δv = Maximum vertical deflection 

Δσ= stands for stress range 

             σY = Yield strength 

 

fBuckling = Buckling load factor, which means a factor to be multiplied to all applied loads to produce linear buckling 

of the structure. This factor is given initially by the linear buckling theory, e.g., Timoshenko formulas or by an FE 

model. It is valid only if the linear buckling stress, which is σCr0 = fBuckling*|σupper flange|, is less than ½*σY; otherwise, it 

must be modified to take into account the plastic deformation during buckling. The corrected critical stress 

calculated using Johnson’s empirical formula, 









0.4
1.

cr

Y
Ycr




 , [14] and the corrected buckling load factor 

is given by

eupperflang

cr




 

 

Objective function transformation 

The exterior point penalty function is used to transform the constrained optimization problem into an unconstrained 

problem. The general form of the transformed objective function is: 

𝐹 𝑋, 𝑟 , 𝑟𝑔 = 𝑓 𝑋 + 𝑟   𝑘
𝑖
𝑘=1 (𝑋)2 + 𝑟𝑔  (𝑚𝑎𝑥 0, 𝑔𝑗 (𝑋) )2𝑚

𝑗=1                       (8) 

where 𝑋 is the vector representing the design variables, hk is the kth equality constraint if any, gj is the j
th

 inequality 

constraint, rh and rg are two additional variables called penalty multipliers[15]. 

 

Numerical examples 

Nine cases defined by three span lengths (8, 12 and 20 m) and three rated loads (10, 20 and 40 tons) are selected as 

numerical examples. The crane specifications are listed in Table 1. The material used for the crane is 350W 

structure steel with yielding strengthSy = 350 MPa, densityρ = 7850 kg/m3, Young’s modulus E = 200 GPa, 

shear modulus G = 77 GPa and Poisson’s ratio ν = 0.3.  

 

Table 1 Crane Specifications according to CMAA 74-2010 

Variable Value/Units 

Rated Capacity: 10, 20 or 40 tons 

Service Class D: Heavy Service 

Load Class L3: Normalload = 2/3 of rated load 

Cycles Class N2: Up to 500000 cycles 

Span: 8, 12 or 20 m 

Trolley Weight: 1 tons 

Other equipment Load: 1 tons 

Bridge Wheel per rail: One on each side 
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The mathematical optimization procedure, described in section 2, programmed using Mathcad Code[16]. Table 2 

summarizes the values of GA parameters. 

 

    Table 2 Genetic Algorithm Parameters 

Parameter Used Value 

Number of Variables: NV = 6 

Population size: NP = 120 

Probability of crossover: PC = 0.85 

Probability of mutation: PM = 0.05 

Mutation Parameter: BM = 5 

Maximum generation number: GMAX = 300 

 

Finite element model 

 

The Fig. 4 shows a 3D drawing of an I-Beam crane, the Fig. 5 (a) shows the overall view of a 3D-solid FE model of 

the crane created in ANSYS Workbench © 15, and the Fig. 5 (b) shows a local zoom around the contact region 

between the lower flange and the wheels. The lower edges at ends are vertically supported, and the loads to be 

considered are composed of the distributed gravity load W1 (weight of the beam), and the concentrated load W2 

applied on the wheels, W2 being the combination of the lifted load, the weights of trolley and hoist. 

 

 

 

Fig. 4. Three-dimensional images of the crane 

 

All loads are adjusted by factors according to CMAA 74 Specifications. The rated load plus gravity are applied 

when considering the yield and buckling constraints, inequalities (2) to (5), while the normalload fluctuation, which 

is just 2/3 of rated load without gravity, is applied when considering the deflection and fatigue constraints, (6) and 

(7). For the FE model, the Surface Response Optimization method [7, 8], already integrated into ANSYS 

Workbench, is used. This model contains about 28300 nodes 

 

 

 
Fig. 5. Finite Element Model of the crane 

 

I-Beam crane 

Trolley 

Hoist 
Trolley 

Hoist 
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Numerical results  

 

For reducing calculation time, it needs to input the reasonable lower and upper bound values of each design variable. 

The bounds used in all 9 cases are shown in Table 3. 

         Table 3. Lower bound and upper bound of design variables in mm 

Variables t1 b1 t2 b2 t3 h 

Lower bound 2 150 2 150 3 250 

Upper bound 100 600 100 600 100 1675 

The optimized design variables for nine cases are presented in the Tables 4.1, 4.2 and 4.3. The Table 4.1 results are 

for short span cranes with three different rated loads, the Table 4.2’s are for intermediate span cranes, and the Table 

4.3’s are for long span cranes. 

 

Table 4.1 Optimal Design variables and constraint parameters for 8 m cranes 

 

L = 8 m 
10 tons 

20 tons 40 tons Bounds 
MATH FEM 

t1 (mm) 27.82 27.98 37.88 52.62 [2, 100] 

b1 (mm) 150.01 150.0 150.16 150.04 [150, 600] 

t2 (mm) 6.99 7.43 8.38 9.08 [2, 100] 

b2 (mm) 194.20 186.1 220.18 252.14 [150, 600] 

t3 (mm) 3.00 3.00 3.19 4.38 [3, 100] 

h (mm) 608.64 650.88 826.46 1137.03 [250, 1675] 

Area (m2) 0.00736 0.00753 0.0102 0.0152  

σcom_max(MPa) 221.9 201.9 224.9 225 <= 225 MPa 

FBuckling 1.9 1.96 1.9 1.91 >= 1.9 

h/t3 202.876 216.96 259.37 259.88 <= 260 

b2/2t2 13.895 12.524 13.14 13.887 <= 13.898 

δv (m) 0.0074 0.0063 0.0057 0.0043 <= 0.013 m 

(Δσ)com_max (MPa) 166 160.1 165.9 165.2 <= 166 MPa 

 

Table 4.2 Optimal Design variables and constraint parameters for 12 m cranes 

 

L =12 m 10 tons 20 tons 40 tons Bounds 

t1 (mm) 27.88 53.52 54.61 [2, 100] 

b1 (mm) 179.54 150.01 206.13 [150, 600] 

t2 (mm) 10.34 12.04 13.41 [2, 100] 

b2 (mm) 287.15 334.55 372.14 [150, 600] 

t3 (mm) 3.02 3.12 4.21 [3, 100] 

h (mm) 785.98 811.78 1094.81 [250, 1675] 

Area (m2) 0.0104 0.0146 0.0209  

σcom_max(MPa) 203.9 188.9 225 <= 225 MPa 

FBuckling 1.9 1.9 1.9 >= 1.9 

h/t3 259.93 259.98 259.98 <= 260 

b2/2t2 13.884 13.896 13.877 <= 13.898 

δv (m) 0.0095 0.012 0.0097 <= 0.02 m 

(Δσ)com_max (MPa) 163 121.3 164.1 <= 166 MPa 
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Table 4.3 Optimal Design variables and constraint parameters for 20 m cranes 

 

L = 20 m 10 tons 20 tons 40 tons Limits 

t1 (mm) 30.14 92.15 54.41 [2, 100] 

b1 (mm) 275.88 150.29 347.13 [150, 600] 

t2 (mm) 15.06 14.98 18.1 [2, 100] 

b2 (mm) 418.41 416.3 501.7 [150, 600] 

t3 (mm) 3.29 3.36 4.72 [3, 100] 

h (mm) 821.75 872.94 1226.51 [250, 1675] 

Area (m2) 0.0173 .0230 0.034  

σcom_max(MPa) 202.5 199.5 218.2 <= 225 MPa 

FBuckling 1.9 1.9 1.9 >= 1.9 

h/t3 249.96 259.47 259.95 <= 260 

b2/2t2 13.89 13.891 13.896 <= 13.898 

δv (m) 0.025 0.032 0.023 <= 0.033 m 

(Δσ)com_max (MPa) 157.7 94.61 166 <= 166 MPa 

 

It is noticed that the lateral buckling and the upper flange local buckling limits are reached for nine over 9 cases, the 

web buckling limit for 6/9 cases, the yield and fatigue limits for 3/9 cases and the deflection constraint is never 

critical. In addition, the optimized I-section configurations always show narrow and thick lower flange, wider and 

thinner upper flange and tall and very thin web. The Fig. 6 approximately illustrates the optimum I-Beam cross 

sectional configuration for a 20 m crane subjected to 20 tons lifted load. The comparison between the custom I-beam 

configuration as shown in Fig. 6,  which has A = 0.023 m
2
, and a doubly symmetrical I-beam ( t1 = t2 = 39.53 mm, 

b1 = b2 = 307 mm, t3 = 3.85 mm, h = 996 mm and  A = 0.028 m2) shows that the customized I-beam could save 

almost 18% of the weight. The design parameters given by the Math optimization are then inputted to an FE 

procedure using ANSYS Workbench 15 with a 3D nonlinearsolid model due to the contact between the wheels and 

the lower flange. The Surface Response Optimization method in ANSYS Workbench used with considering the 

same constraints, except the linear buckling constraint, because linear buckling does not work with nonlinear contact 

models. However, the buckling constraint (fBuckling ≥ 1.9) replaced by an approximate constraint on the slenderness 

ratio against lateral buckling to give a comparable buckling load factor. This slenderness ratio is given by λ = L/rcy 

where rcy is the lateral radius of gyration of the effective compression area which is empirically the 2/3 outermost of 

the compression side of the cross section (see Fig. 6). FE stress calculation with nonlinear contact and optimization 

procedure is very time consuming;so only one case selected to show FE results, which is the 8 m and 10-ton case. 

The slenderness ratio constraint for this case is λ ≤ 190.  
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Fig. 6. Optimum configuration of an I-section 

 

The new optimized design parameters given by FE procedure are shown in the FEM column of Table 4.1;theyare 

slightly different but quite close to the Math results. The Fig. 7 reveals that the maximum Von-Mises stress is in the 

lower flange right under the wheels. 

 

 
 

Fig. 7. Location of maximum Von-Mises stress 
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Conclusion  

A Hybrid Genetic Optimization Algorithm (GA) and a Mathematical optimization procedure are programmed in 

Mathcad and successfully applied to custom welded I-Beam cranes with different spans and rated loads subjected to 

yield, buckling, deflection and fatigue criteria. It is found that the constraints of general lateral buckling and local 

buckling of the upper flange are always reached for all cases. The web local buckling constraint is critical for about 

66% of cases, the yield and fatigue constraints found critical for 33% of cases and the deflection constraint is not a 

problem at all. The optimized custom I-section has a configuration of narrow and thick lower flange, thinner and 

wider upper flange and the web is talland verythin, which could save about 18% of weight compared to commercial 

standard I-Beam. FEM optimization using Surface Response method gives comparable results and confirms that the 

proposed procedure is efficient. 

 

For future works, the FE optimization taking into account nonlinear buckling due to contact or plasticity constitutes 

a significant challenge. Furthermore, the optimization procedure with multi objective functions such as weight and 

cost will also be an interesting future work. 
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