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ABSTRACT 
 

In this paper using the idea of quasi coincidence of a fuzzy point with a fuzzy set, we 
introduce the notion of ( q,  )-fuzzy prime bi-ideals and semiprime bi-ideals. Also 

we investigate some related properties of these fuzzy substructures.  
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1. Introduction  

 
    In 1965, L. A. Zadeh [1] introduced the concept of fuzzy set. Using this concept, 
many authors generalize several notions of algebra. In 1971 Rosenfield [2] defined  
fuzzy subgroups and gave some of its properties. Since then, the study of fuzzy 
algebraic structures has been pursued in many directions such as groups, modules, 
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vector space and so on.  In1982 Wang-Jin Liu [3] introduced the notion of fuzzy sub-
ring and ideals. Subsequently, Mukharjee and Sen [4] Swamy and Swamy [5], Yue [6] 
Dixit et al [7], Raj Kumar and [8], Zie [9] developed the theory of fuzzy rings. Since 
then many researchers explored on the generalization of the notions of fuzzy set and 
its application to many mathematical branches. S. Abou zaid[10 ] introduced the 
notion of a fuzzy sub near-ring and fuzzy ideals of near-ring. The concept of the 
quasi-coincidence of a fuzzy point with a fuzzy subset was introduced by Pu Pao-
ming and Liu Ying-ming [11] in 1980. The concept of “belongingness” and “quasi-
coincidence” of a fuzzy point with a fuzzy set played a vital role to generate some 
different types of fuzzy subgroups. In [12,13] Bhakat and Das have introduced the 
notion of ( q,  )-fuzzy sub-groups and notion of ( q,  )-fuzzy sub-ring. Davvaz 

[14] extended these results to near-ring. In [15] Kazanci and Yamak study 
( q,  )-fuzzy bi ideals of a semi group. Dheena and Coumaressane [16] 

introduced the notion of an ( q,  k
)-fuzzy quasi-ideals and bi-ideals of near ring. 

Bashir [17] introduced the notion of prime bi-ideal and strongly prime fuzzy bi-
ideals in near-ring. In this paper using the idea of quasi coincidence of a fuzzy point 
with a fuzzy set, we introduce the notion of ( q,  )-fuzzy prime bi-ideals and 

semiprime bi-ideals. Also we investigate some related properties of these fuzzy 
substructures.  
 
 
2. Preliminaries  

In this section we will briefly recall some basic notion. 

 Definition 2.1. A near-ring N is a system with two binary operations + and . such 

that :  

                (i)  (N , + ) is a group, 

                (ii) ( N , . ) is a semi group, 

               ( iii) (x + y )z = xz + yz  for all x ,y ,zN. 

In a near-ring only one distributive law holds (left or right). 

Definition 2.2. Let N be a near-ring. A subset I of N is said to be an ideal of N if  

                 (i)  ( I , + ) is a normal subgroup of N, 

                ( ii)  IN  I 

               ( iii) x ( y + z ) – xy  I , for all zI and x, yN. 
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If I satisfies (i) and (ii), then I is called a right ideal of N. If  I satisfies (i) and (iii), 

then I is called left ideal of N. 

Definition 2.3. An ideal P of N is called prime if for all ideals I , J of N such that IJP 

implies either IP or JP. 

Definition 2.4. An ideal I of N is semiprime if and only if for all ideals J of N such 

that J 2  I implies J I. 

Definition 2.5. Let N be a near-ring. For any two subsets A and B of N define an 

operation ‘ ’ is given by A B = { x(y + z ) – xy | x, yA, zB}. 

Definition 2.6. A subgroup B of ( N , + ) is said to be a bi-ideal of N if 

BNB (BN)BB. 

Definition 2.7. A bi-ideal B of a near-ring N is called a prime bi-ideal of N if  XY B 

implies X B or Y B for any bi-ideals X ,Y of N. 

Definition 2.8. A bi-ideal B of a near-ring N is called a semiprime bi-ideal of N if 

X 2 B implies XB for any bi-ideal X of N. 

 

Definition 2.9.  Let  X be any non-empty set. A mapping    : X    [0,1] is called a 

fuzzy subset of X . 

Definition 2.10.  Let  A   X. Then the function   : X    [0,1] defined by   

                        (x) =  1          when  x  A and  

                                =  0        otherwise  is a fuzzy subset of X,  which is the 

characteristics function A
  of  A. 

Definition 2.11.  Let X be a any non empty set. A fuzzy subset    in  X defined by  

                          (y) = t     ( 0)       if   y  =  x 

                                  = 0                  otherwise 

is said to be a fuzzy point with support  x and value  t  and is denoted by t
x . 
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Definition 2.12. If x
t
 is a fuzzy point of  X, where x X  and t (0,1], and a N then 

ax
t
= (ax)

t
. 

Definition 2.13.  A fuzzy point 
t

x  is said to belong to (resp. be quasi coincident 

with ) a fuzzy  set  , written us 
t

x  ( resp. 
t

x q ) if  (x)   t  or  (resp. (x) + t  

>  1) : 

 if  (x)   t or (x) + t  >  1 then we write 
t

x  q . 

Definition 2.14.  Let X be any non empty set and   is a fuzzy subset of X. For all            

t (0,1], Denote the set 
t

  =  { xX |  (x)   t }. Then 
t

  is called level subset of  .  

Definition 2.15.  Let   and   be any two fuzzy subset of N. Then      ,     

and    is defined by  

             (   )(x) = min{ (x) , (y)} 

              (   )(x) = 






sup
ab)cb(ax

{ min{ (a) , (c)}}, If x is expressible as x=a(b+c)-ab 

                                = 0                                              otherwise 

                 (  )(x) = 




yzx

 {min{ (y) , (z)}}  If x is expressible as x = yz. 

                           =  0                      otherwise. for all x, y, z, a,  b, c N. 

 Clearly for any fuzzy points t
x  and r

y  in N, we have t
x

r
y  = (xy) rt . 

Definition 2.16. A fuzzy subset  of a near-ring is called a fuzzy bi-ideal of N if  

     (i)     ( x – y )   min{ (x ) ,   (y )}, 

     (ii)    (xyz)   min{ (x ) ,   (z)}, for all x, y, z N. 

 A fuzzy subgroup   of N  is called a fuzzy bi-ideal of N if   > (N ) (N    ). 

Definition 2.17. An ( q,  )-fuzzy subgroup  of N is called an ( q,  )-fuzzy bi-

ideal of N if   (x)   min{((N ) (N    ))(x) , 0.5}, for all xN. 

Remarks 2.18.  Every fuzzy bi-ideal of N is an( q,  )-fuzzy bi-ideal of N. 
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Remarks 2.19. Let   and   be any two ( q,  )-fuzzy bi-ideal of N. Then      

is also an( q,  )-fuzzy bi-ideal of N. 

Definition 2.20. If    is a fuzzy subset of N, then we denote 
*

 = {xN |  (x) = 

 (0)}. 

Definition 2.21. A fuzzy subset   of N is said to be an ( q,  )-fuzzy ideal of N if 

for all x, y, zN and for all r, t (0. 1]  

(1) x
r
.y

t   implies  (x – y ) )t,rmin(   q   

(2) 
t

x  and y  N implies (y + x – y )
t
  q   

(3) 
t

x  and y  N implies (x y)
t
  q   

(4) z
t  and x,y  N implies (x (y + z )-xy)

t
  q   

   

3. ( q,  )-fuzzy prime bi-ideals. 

Definition 3.1. Let   be an ( q,  )-fuzzy  bi-ideal of N. Then  is said to be  

(i)  prime bi-ideal, if  for all x, yN and  r, t(0,1]  

                             
tr

yx   implies 
r

x  q  or 
t

y   q  

(ii) semiprime bi-ideal if  for all x N and  r (0,1]  

                          r
x 2

 implies r
x  q .  

Theorem 3.2. Let   be an ( q,  )-fuzzy prime bi-ideal of N. Then the following 

statement are hold : 

         (x)  (y) min ( (xy), 0.5), for all x, y N.  

Proof : Let    is an ( q,  )-fuzzy prime bi-ideal of N.  If  possible let x, y N be 

such that   (x)  (y) < min ( (xy), 0.5). Choose  r  such that   (x)  (y) <  r  <  

min ( (xy), 0.5). Then (xy) r    but x r q   and  r
y q  , a contradiction. 

Thus  (x)  (y) min ( (xy), 0.5), for all x, y N. 
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Theorem 3.3. Let   be an ( q,  )-fuzzy semiprime bi-ideal of N if and only if  

 (x)min ( (x 2 ), 0.5), for all xN. 

Proof : Let    is an ( q,  )-fuzzy semiprime bi-ideal of N.  If  possible let x N be 

such that   (x) < min ( (x 2 ), 0.5). Choose r  such that   (x) <  r  <  min ( (x 2 ), 

0.5). .Then (x 2 )
r
   but x

r q  , a contradiction. So  (x)min ( (x 2 ), 0.5). 

Conversely let ( (x)min ( (x 2 ), 0.5) and let 
r

x 2
 , for all xN. Then 

 (x)min ( (x 2 ), 0.5)  min ( r , 0.5) = 0.5 or r according as r > 0.5 or r  0.5. 

Hence 
r

x  q . Thus    is an ( q,  )-fuzzy semiprime bi-ideal of N. 

Proposition 3.4. Every ( q,  )-fuzzy prime bi-ideal of N is a fuzzy semiprime bi-

ideal of N. 

Theorem 3.5.  be an ( q,  )-fuzzy prime bi-ideal of N if and only if for all 

t(0,0.5], if 
t

  is non-empty and 
t

  is a  prime bi-ideal of N. 

Proof : Let    is an ( q,  )- fuzzy prime bi-ideal of N and t (0, 0.5] such that 
t

  

is  

non empty. To prove t
  is a prime bi-ideal of N. Suppose x, yN and x, y t

 . Then 

since  is an ( q,  )- fuzzy prime bi-ideal, we have  (x – y)   min( (x),  (y), 

0.5)  min (t ,0 .5) = t.  So (x – y) t
 .  

Now let zN. Suppose z t
 N

t
 

t
 N   

t
 . Then there exists x, y, a

1
, a

2
, b  

t
  

and n
1
, n

2
, n

3
   N such that   z = a

1
n

2
( a

2
n

3
+ b ) -  a

1
n

2
a

2
n

3
. Thus   (x)  t , 

 (y)  t,  (a
1
) t,  ( a

2
)  t,  (b)  t . Now  

   (N  N    )( z ) = min{ (N )(z) , (N     )(z)} 
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     = min{sup
yxnz 1

{ min{ (x) ,  (y)}},  sup
32213221 nana)bna(naz  

min{{  (a
1
) ,  (b)}}} t  

  We have  

    min{(N )(z) , (N     )(z) ,0.5} 

     = min[min{sup
yxnz 1

{min{ (x),  (y)}},  sup
32213221 nana)bna(naz  

min{{ (a
1
) ,  (b)}}},0.5 ] 

min ( t , 0.5 ). Since  is an ( q,  )-fuzzy prime bi-ideal of N, we have  (z) t . 

So z 
t

 . Hence 
t

  is a  bi-ideal of N. Again let  x, y  N be such that  

  xy 
t

 . Then  (xy) t . Since  is an ( q,  )-fuzzy prime bi-ideal of N, we have  

   (x)  (y) min ( (xy), 0.5) min ( t ,0.5 ). which gives   ( x)  t , (y)  t . 

Hence x 
t

  or  y 
t

 . Thus 
t

  is a prime bi-ideal of N. 

Conversely let 
t

  is a bi-ideal of N  where t  ( 0 ,0.5 ] . Consider  

     (N  N    )( z ) = min{(N )(z) , (N     )(z)} 

     = min{sup
yxnz 1

{ min{ (x) ,  (y)}}, sup
2212211 ana)ba(nayxnz 

 min{{ (a
1
) ,   (b)}}}  

  = sup
2212211 ana)ba(nayxnz 

{ min {  (x) ,  (y),  (a 1 ) ,   (b)}} 

Let  (x) = t 1  <  (y) = t 2  <  ( a 1  ) =  t 3  <   (b) = t 4 then  
4321 tttt

 . 

Then x, y, a
1
, b  

t
  and z = xn

1
y 

1t
 N 

1t
 and z = a

1
n

2
( a

2
+ b )- a

1
n

2
a

2  

1t
 N

1t
 . Thus z  

1t
 N 

1t
 

1t
 N  

1t
 . Thus  is an fuzzy bi-ideal of N . Also 

every fuzzy bi-ideal of N is an ( q,  )-fuzzy bi-ideal of N (Remarks 2.18.). Hence 

 is an ( q,  )-fuzzy bi-ideal of N. 
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Again let x, y  N be such that  (xy) = t and (xy)
t   . Since 

t
  is a prime bi-ideal 

of N, we have x  
t

  or y 
t

 . Which gives x
t  q  or 

t
y   q . Thus  is an 

( q,  )-fuzzy prime bi-ideal of N. 

Theorem 3.6. Let  be an ( q,  )-fuzzy  bi-ideal of N. Then the following 

statements are equivalent, 

(1)   be an ( q,  )-fuzzy prime  bi-ideal of N. 

(2) For any fuzzy bi-ideal  and   in N  

          implies   q  or   q   

Proof: (1) implies (2). Let   be an ( q,  )-fuzzy  bi-ideal of N. Let  and   be 

any fuzzy bi-ideal of N. If   q   then there exists 
t

x  such that 
t

x q  . 

Then for all 
r

y    we have 
t

x  r
y      . But 

t
x q  . Hence 

r
y  q  . 

Since   is an( q,  )-fuzzy prime bi-ideal of N, we have   q  . Hence (1) 

implies (2). Clearly (2) implies (1). 

Theorem 3.7. Let A be a non empty subset of N. Then A is a prime bi-ideal of N if 

and only if A
 is an ( q,  )-fuzzy prime  bi-ideal of N.  

Theorem 3.8. Let   be an ( q,  )-fuzzy ideal of N. Then   be an ( q,  )-

fuzzy semiprime bi-ideal of N if and only if for all t(0,0.5], if  
t

  is non-empty and 

t
  is a  semiprime bi-ideal of N. 

Theorem 3.9. Let  and  be any two ( q,  )-fuzzy semiprime bi-ideal of N. 

Then     is also an ( q,  )-fuzzy semiprime bi-ideal of N. 

Proof : Let  and  be any two ( q,  )-fuzzy semiprime bi-ideal of N. Then 

    is  an ( q,  )-fuzzy bi-ideal of N (Remarks 2.19.).  
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 Let xN. Then  (   )(x) =  (x)  (x)                                                                        

                                                 { min ( (x 2 ), 0.5)}  { min (  (x 2 ), 0.5)} 

                                                   min {((   ) (x 2 ), 0.5)}. 

Thus     is also an ( q,  )- fuzzy semiprime bi-ideal of N. 
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